
Final Project – ME 314, Machine Dynamics 

Model of a Trebuchet 

Description 

My original proposal was of a different project but adhering to the feedback, I decided to go ahead 

with the trebuchet. A trebuchet has three degrees of freedom, one of which is initially constrained 

as the projected mass, M2 rests on the floor. As the counterweight descends, the contact is lost and 

the M2 is launched when the two links align. The hinged arm has a centre of mass at an offset of Lm. 

M2 is a rigid body, circular in shape with three configuration parameters.  

After the projectile is launched, M2 impacts a horizontal line at a height of 2.5m from the base. To 

show realistic results, a coefficient of restitution with a value of 0.5 is added to the impact update 

law. The angular velocity of M2 just changes direction owing to friction. This friction force calculation 

is not included in this project.  

 Transformations and drawing 

TAG = TAB.TBB’.TB’G 

 

 

TAD = TAB.TBB’.TB’C.TCC’.TC’D 

 

 

TAF = TAB.TBB’.TB’E.TEE’.TE’F 

 

 

Formulation 

Using the rigid body transformations above, I derived the velocities using G-1Ġ and then calculating 

the kinetic energy of the system. The potential energy is calculated using the heights from the 

transformations. For the initial part of the simulation, M2 slides on the ground. This is modelled as a 

constraint. For the second part where the mass is swinging, the system is unconstrained. The mass is 

released when the two arms align. The mass in mid-air is given by [q[t], x[t], y[t]]. The impact occurs 

when the periphery of M2 satisfies the constraint. This is calculated as TAM.TMP, where TMP represents 

the transformation from the centre of the body to the periphery.  

Simulation 

The code is divided into four parts, three of which are described above and a final compilation and 

animation. The code uses default integrator in NDSolve and breaks each time a change in the system 

occurs such as impact or mass release. The terminal conditions from each of the simulation serve as 

the initial conditions for the next. The animation depicts the result which seem exactly like what we 

would expect intuitively. The code takes less than a minute to run. The helper functions and each of 

the parts have to be executed independently and sequentially. Part C spits some error sometimes 

but this goes away when you execute the block again (I was unable to figure out the reason behind 

this). An extension to this could be to add elastic properties to the string that hold the mass.  

Figure 1 Diagram of the system 


